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REALIZATION OF NONAXISYMMETRICAL
MOMENT-FREE STATE IN SHELLS OF
REVOLUTION

Yu. V. Nemirovskii and G. I. Starostin UDC 539,311

A series of formulations of problems involving realization of a moment-free stressed state in elastic
reinforced shells with arbitrary shape of the center surface is given in [1]. This paper is concerned with
solving three of the problems proposed in {1] for the case when the center surface of the shell is a surface of
revolution with nonzero Gaussian curvature, The problem of the possibility of realizing a moment-free state
in arbitrary reinforced shells with zero curvature was examined in [2] and the particular case of axial sym-

metry was examined in [3],
1, We shall examine a shell of revolution with a quasiuniform layered structure over the thickness. We

shall choose a system of coordinates fixed to the lines of principle curvature of the surface of the shell. If the
shell functions in a moment~free stress state, then the following relations must be satisfied [1]:

equations of equilibrium
a(le)/a¢ — TRy cos @ 4 R10T'12/69 = —TrRyps, (1.1)
10Tz/33 + 3("T12)/6‘P + Ty,R, cos ) = ~TRpy,
TR, + T\R, = Rlepav
elasticity relations

Ty = hayg, + a8 + @138r2)s T 2 = h(age; + 3085 + azssm)n (1.2)
T 12 = T = h(a1381 + assﬁz + aaasn)’

geometric equations

1 du~ w 1 cos @ w (1.3)
8= R, oe +‘ R &= T—7 ¢t '
N r a_‘(u '
&=+ g T RI'W,T)’
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L= ;1 Z?pl:@f %22%%+L‘f_gﬁ1:o,, (1.4)
R 8= — 55+ 7
equations of continuity of deformations
Ry 0e,,/60 — re,/op — (é2 — g)R; cos ¢ =0, (1.5)
rde13/0@ + £1(Ry + Ry) cos ¢ — Ry08,/00 = 0,
—;? {é—l ["‘% 4 (e — &) R, cosp — —2‘; 6;(;2 ]}“—}— —i—- —%(31% — %% — 84,12, cos ‘P) = 0.
The generalized forces ‘ _
Ty = Tor Tya = Topy Ton =0, My =0 (1.6)
or the corresponding generalized displacements
u, v, w, 4 (1.7)
must be given on the boundary of the shell ¢ = const [4], while the generalized forces
Tz———Te, Ty = Togs Ton :0_7 My = (1.8)
or the generalized displacements
v, 0, By (1.9)

must be given on the boundary 6 = const.

In (1.1)~(1.9), Ty, Ty, Ty, are the forces; e, €y, €45, components of tangential deformation of the center
surface; 4, My, T, components of the bending deformation; u, v, and w, components of displacement;py,py,Ps,
components of external surface load; Ry, Ry, principle radii of curvature; r= R, sin ¢, instantaneous radius;h,
thickness of the shell; ayy,, generalized elastic characteristics of a typical layer of the shell; Ty, Tgpgs Tyns
Mq,, components of the vector of external forces and bending moment, applied at the boundary ¢ = const; Tg,
Tops Tgn, Mg, analogous quantities given on the contour 6 = const; #,, ¢,, angles of rotation of the normal to
the center surface, '

2. Equations (1.1)~(1.3) are the equations of classical moment-free theory [5] for the shell under study
(principle system of equations of moment-free theory [6]). Together with the conditions for the absence of
bending deformation (1.4) and the equations of continuity (1.5), these equations determine the stressed—de-
formed state of the shell of revolution with finite bending rigidity, functioning in a strictly moment-free re~
gime,

The solution of the equations of continuity (1.5) gives the general form of the field of tangential deforma-
tions of the surface of revolution with bending-free deformations of the latter, To find it, we eliminate in (1,5)
the functions ¢4, €5 and obtain

] de. ] .
';39—( 12 + e clg ‘P): 0.

g
Solving this equation and integrating the first two equations from (1,5), we find
ta=4L @sinto+E (@), - (2.1)

9
: 6—o, |
o= 5 (@) + ot 0 [ 8,000 + o -G sing),

0 %
0
1 1. . dg RN B
g, = T[g,, (6) + _Y Bl('s_i%'cﬁ ‘,ﬁ + &, cos (P)dfPiI-
2o o -

Here &,(0), £,(¢), £3(¢), £4(0) are functions of integration; the lower limits of integration ¢, 6, are chosen
arbitrarily.

We note some properties of the solution obtained, related to the form of the central surface,
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1. When the center surface contains a point corresponding to a smooth vertex (¢ = 0 or ¢ =), it follows
from (2.1) that the functions &,y &y, &; will be finite at this point if we assume (for ¢; =0, )

5.(6) = 0, £,(0) = 0. (2.2)

Therefore, for moment-free deformation of such a shell, the magnitude of the shear deformations €4y does not
depend on the angle § while the relative elongations g, g in the general case depend linearly on 6.

2. If the shell is closed in the circular direction, then from the condition of periodicity of the functions
€19 €y, €9 With respect to 6 we obtain the dependence

gz(w):ﬁ)(c— o 521(9)119), (2.3)

where ¢ is an arbitrary constant; £,(9), £,(6) are periodic functions.

3. When the center surface contains a smooth vertex and is closed in the circular direction, we find
from (2.1)-(2.3)

9

) 1

215=0, & =8 (9) =2, (), &= - 55331 cos pdg = &, (@), (2.4)
0

i.e., in such a shell, with bending-free deformation the field of tangential deformations is axisymmetrical and,
in addition, the deformations &; and g, are the principle deformations.

When the equations of continuity (1.5) are satisfied, displacements in a strictly moment-free shell are
determined from Egs. (1.3) and (1.4) in the form
]
u=Acosq + Csing + B9, w=Asing, v= % —Hzcoscpj ¥,d0 + n; (9), (2.5)
e0
where

P .
A= Bty B | Cdoi €=10,4m(0) Rut (Ba— B) Ol s
Py
' 8

9
. (9) = ',1._ [01 + 7od 1 (905 0) + 5‘ & R, sin cpd_(p:] —Jy; Jy=sing S\ £1040;
@ ’ 2

12 (0) = (e, + Jo) sin® + (c; + Js) cos 8; &, = (¢, + J,) sin 0+ (e5+ J;) cos ;

. [} @ )
dd B,
Ns(@) =r| e+ ("Eg'l" +S. 01d9> ctgp— 5‘ Shllgq, dq’;];
B9 Po

] 0
, . #B -
J2=Sncosde; J3——-.—j‘n_smede;n:rez-(.fl—}—'rh)choscp— e — B;

9 . )

0 - 0 s

P 5., .
J,=-<sing :éz cos 8d0; J5=sinq;§ 56 sin 6d6.
) o )

Here cy,...,Cq are arbitrary constants, Thus, in contrast to the classical moment-free theory [4, 6], the
geometric equations of a shell functioning in a strictly moment-free stress state can be solved explicitly in a
general form., This circumstance is a result of the possibility of constructing an explicit solution of the geo~
metric equations of the general moment theory [6].

When the shell has a smooth vertex (¢ = 0), is closed in the circular direction (dome), and is com-
pletely clamped along the bounding contour ¢ = ¢, against tangential displacements

u(q)l’ B) = O; _U((PD e) = 03;
we obtain from (2,5)
’ (2.6)
A
U == g,r co5 ¢ -+ sin g (c1 + j g, R, sin (Pd<P) ’

@1
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)
w=g,rsing — Coscp ¢+ S & Ry sinodp §, (2.6)
: ‘9

v=20, % - 0’/» € = é2((131)1:1’2((191) cos (P1;

a

3. We shall formulate and examine further three problems involving the realization of a moment-free
stress state in reinforced shells of revolution,

Problem 1. Assume that the following are given for a shell of revolution: shape of the center surface,
laws of variation of the thickness and nature of the anisotropy, boundary conditions of the type (1.6)-(1.9). The
problem is to determine the components py, py, p; of the surface load that gives rise to a moment-free state
in the shell,

Substituting the expressions for &4, £y €5 from (2.1) into the relations of elasticity (1,2) and further
into the equation of equilibrium (1.1), we obtain an expression for the components of the surface load sought
in terms of the quantities and functions £,(8), £5(¢), £3(¢), £4(0) known from the conditions of the problem.,
Thus the solution of problem 1 reduces to finding the functions &4, £, £3, £, from the boundary conditions.
After these functions are found, the forces are determined from Egs, (1.2), while the displacements are de~
termined from Egs, (2.5).

If it is not possible to satisfy all boundary conditions stated due to the functions &4, &, &3, &, then this
means that in this shell it is impossible to realize a moment-free state by choosing the surface load.

As an example, we shall examine the solution of problem 1 for a closed shell of revolution with smooth
vertices under the condition that along the meridian 6 = 6, the value of the normal component of the surface
load is given:

Pslo=8, = P (9)- (3.1)

On the strength of the fact that the shell is closed, it is necessary to require that all of the functions sought be
periodic with respect to 9 and finite at the points ¢ = 0, ¢ = 7.

In the moment-free shell under study, the general form of the field of deformations is determined by re-
lations (2.4). Therefore, to solve the problem it remains to determine the function &;(¢) or, which is more
convenient, the function e,. For this, taking into account (2.4), we represent the last equation in (1.1) with the
help of the relations of elasticity (1.2) in the form

h(Dlel -+ Dzﬁz) = DPsy (3.2)
where Dl = alqul + alzRgl; Dz = alzR-{1 + “ZZR?-

If the geometry of the center surface and the nature of the anisotropy of the shell material are such that
D, = 0, then from (3.2), taking into account (2.4) and condition (3.1), we obtain

L .
gy = kg — Fgey = KIp — K3ey, ky = (hDy) ™", ky = DyDi", (3.3)
K = Fy (91, 00), K2 = ;kz (@, 80)- :
It also follows from (2.4) that
d(re,)/de = &,R; cos . (3.4)

Substituting here the expression for g4 from (3.3) and integrating the expression obtained relative to &,, we
obtain

- e . 9 o
g, = ir exp (— J)S‘pk‘l’RI cos pexpJdg, J = 5.——} KSR, cos ¢ do. (3.5)
) N o .

If Dy = 0, then D, # 0, since otherwise the condition that the potential energy of the deformation of the
shell be positive definite breaks down, In this case, we immediately determine from (3.1) and (3.2)

6= p3 (WD) ™ == p (kD) lo-s,-

We shall illustrate the results obtained when the shell is isotropic and the center surface is closed el-
lipsoid of revolution. In this case, relations (1.2) with conditions (2.4) have the form

Ty = hE(1 — v)~e, + vey), Ty = hE(1 = v3)~Y(ve, + &), Tyy = O.

Substituting these expressions into the equation of equilibrium (1.1) and including (2.4), we obtain
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B 1 ok v ok L )]
,.pl“i—vz[ (R aq>+ 7 thg(P)e‘+(_hct q)—_lﬁ)e* ' jT( +v ‘ (3.6)

o= — E(gvi;l;ﬁz) zg'l Py = I_h_i_[( + R ):-;1 —i— (1—}1— +_7;;) 52];(

Let the thickness of the shell vary according to the law

H=1 -}—’I‘I,\= sin®Q sinp, (3.7)
where H = h/hy; Hx = (hy=h;)/hy; hy =h(0, 6); hy; = h(n/2, n/2). We shall also assume that
.p(@) = p = const. (3.8)
For the radii of curvature we have [4]
Ry=R (4 ysinq)*", Ry— R(1+ wa‘”ﬂ“%m’ (3.9)

y=et—1, e =2,

where a,, a; are the semiaxes of the ellipsoid (the semiaxis a, is situated on the axis of revolution). Since
for an isotropic ellipsoid

= (B/(1 — v¥)(1/R, + vIRy) >0,
its deformation is determined by relations (3,3) and (3.4) in which ,
K = (1 — vA/RoE) (A By + vIR) ™, kY = ky = (v/Ry +1/Ry) (1/Ry + VIR ™ (3.10)
Figure la~c shows the dependence of the dimensionless quantities q = p1/ps 45 = P2/D» 43 = 3/ p on @, 0,
calculated according to Egs. (3.3) and (3.5)-(3.10) with v = 0.3, ¢ = 0.25,0,=0, 0<¢ < 7/2, 0=< 0 < 7/2, It
follows from (3.6)~(3.9) that for other values of ¢, 8 the quantities qy, g, g3 are determined according to the
equalities
0,(9, 0) = —u(% — 9, 0) = g1(@, — 0) = gu(, 7 — 0),
7:(9. 0) = qa(n — 9, 0) = —15(9, — 0) = —gx(p, = — 0),
95(95 0) = go(n — 9, 0) = 25(9,.— 6) = gs(p, = — 0).

The continuous and dashed curves in Figs, la-c correspond to values Hx = 1, 2; curves 2-5 correspond to the
values 8 =7/8, m/4, (3 8)r, /2. Curve 1 corresponds to the case 8 = 0 (for any Hx).

For Hy = 0 the ellipsoid has a constant thickness. Then it follows from (3,6) and (3.7) with the condition
(3.8) that g4 = qy(¢), qy = 0, g3 = 1, The function q,(¢) with & = 0.25 is illustrated by the dot—dash curve in
Fig. 1a, For a sphere (¢ = 1), we obtain from (3.3)~(3.7) that qy =q9 =0, q3 = 1,

4, To describe the elastic properties of the shell material, we shall use the model of a reinforced layer
[7]. In this case, the coefficients in (1.2) have the form

+ E CI)nEnllrh ais = E mnEnlmljnf . (4.1)

. on=1 n=1

aip = — 2
N
‘l" ﬁ ﬁ)nEnlmlzm

- Ev 2 .
C Gy = i‘a:""‘-,z + n2=1 (OnE,,,lmlg,., Agz = 2(1 + 7
vl'l'n =008 11)",1 _l2n - Sin 1Pm ”7 ] = 11 21. i '76:]7:

where N is the number of families of filaments (reinforcement) oriented in the same direction in a character-
istic layer; n is the number of families; wy is the relative volume content of filaments of this family; E, is
Young's modulus for the filaments; ¥, is the angle between the orientation of the filaments in the family and
the meridian; E, v are Young's modulus and Poisson's coefficient of the binding material; a is the relative
volume content of the binder in the layer,

Problem 2, Given: the shape of the center surface, the external surface load, the rigidity Gk = wkEk
(aE)™! (preliminary reinforcement, k = 3, ..., N), the angles ¥n (¢, 8) (n = 1,...,N), and boundary conditions
of the form (1.6)-(1.9). On separate sections or lines of the center surface, the values of h, Gy, G, are given,
The problem is to find the changes in the thickness h and rigidities Gj, G, (additional reinforcement) with
which a2 moment-free stressed state is realized in the shell,

In solving problem 2, we shall assume that in each specific case the general solution of the equations of
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Fig. 1
equilibrium (1,1) is known. (The problem of constructing the integrals of these equations has been investi-

gated quite completely in the moment-free theory [4-6].) Then, respresenting the elasticity relations (1.2)
with the help of the dependences (4.1) in the form

Giey Py + Goeylty — Ty (aBER)™ = — 4118 — aysty — @18, (4.2)
G1.e1l§1 -+ Gzezlgz -7, (aEh)-l = — 02231 - a;282 — a;a_?fs;
Gieylyln + Golygeolyy — Ths (aEh)—l = — aisal - a2’382 - a;ésax
where
1 ~ : d
ai = mot X Gl ay == + X Gl
k=3 . h=3 T
N - R . N
’ - 1 +
aiz = kzs Gylislin; ass = Tagw T hz, Grlinlo;
- . | _
& =gl 4 eal%i + Sajllilzi? €3 = €19,
and assuming that ,
A= [Tylylss + Tolinlys — Ty sin (1[:g =+ ;)1 sin (\p.2 — ) 5= 0,
we find
k= A@EA), G; = Ae,A) 7, i) = 1,2, i %] (4.3)
Here

B 3 ,
A= (—1) ;ZJI Biner; Pir = aBi — anCi + anDs;

: ) 3 ! N r ’ .
As = sin (Y, — i) hz [alhl21l22 + aglysliy — ase sin (Y; + 11’2)] €3
=1
B; i (Tl — Tmlzi) L Ci= (T1lyj—T1hy) Ly Di= T1lzj — Tzl%j-
Substituting into (4.3) the values for &4, €5, €3 from (2.1), we obtain expressions for Gy, Gy, h in terms

of the given and arbitrary functions, entering into the general integrals Ty, Ty, Ty €15 €9 €3. Therefore, the
solution of problem 2 reduces to determining these arbitrary functions from the boundary conditions and the

conditions on Gy, Gy, h. Finally, the displacements are found from Eqgs, (2.5).

We shall examine the case when the shell is closed in the circular direction, contains a smooth vertex,
and the value of the relative rigidity G, is given on the contour 6 = 0,

" Gy(9,.00) = £(9). (4.4)

In this case, according to the dependences (2.4), the deformation field is determined to within the function
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g9(%). To find it, we shall take into account condition (4.4) and represent the third equality in (4.3) in the
form

& = — key, k= [(522 — gA sin™,) (Bor — gA 0052%)'1]6=eo- (4.5)

Solving Egs. (4.5) and (3.4) simultaneously, we find

9 2,
g, =cexpJ, J=—‘S‘_(1+k)j;?0tg?d% (4.6)
0

where c is a constant of integration,

As an example, we shall examine the solution of problem 2 for a spherical dome with a vertex (R, =
R, = R = const). On the reference contour ¢ = ¢, the dome is fixed so that the following conditions are satis-
fied
u=0,0=0, Top =0, Mg =0 for ¢ = gi. (4.7)
The surface load acting on the shell has the components:

pi=gsin ¢, p, =0, py = —g cos ¢ — p sin @.cos 6, p = const, (4.8)
q{9) = gy + (g4 — o) (1 —cos ¢)"(1 —cos g4)"", m = const,

i.e., a wind [4] and vertical axisymmetrical loads act together on the dome. We shall assume that the ''pre-
liminary'' reinforcement is absent

G, =0fr k>3, (4.9)

while ""additional'" refinforcement is laid according to the scheme

Y=o, Py =P for 0O, (4.10)
P, = —a, Py = —f for <O 2“7).

where o, 8 are fixed constants,

From the equations of equilibrium (1.1}, under the condition that the forces remain finite at the point
¢ = 0, we find
_ R (4% — 4,) (1 — cos )™
h==ryay [q" T L
T, = —Rgq cos g — Rp sin ¢ cos 8 — Ty, : _
T, = Tsin 0, T(p) = —Rp(2 + cos'p)(1 — cos @)}/2[3(1 + cos ¢)*/?1-1.

]—i—}l"cosq)cose,; (4.11)

Using the relations of elasticity (1.2) and the dependences (4.6) and (4.11), for constant ¢ in expression
(4.6}, we find

¢ = e(0) = —Rgy( — v)(@hoaE)~Y, kg = klom: (4.12)

The components of the displacement of the center surface of the dome being examined are determined from
the dependences (2.6).

Figures 2a and b show the dependences H =h/h;, Gy, G, as a function of ¢, 8 (for which a strictly
moment-free stress state is realized in the dome), calculated using Eqgs. (4.3) taking into account (4.4)-(4.12).
For definiteness, it is assumed that

0'=0, g(9) =0, ¢ = (3/8)m, a = 40°, B.= 0°, plg, = 0.5,
gslgy =25, m=3, @,=(116)xn, v=203.
Since taking into account (4,10) and (4.11) it can be shown that the functions H, G4, G4 are even with respect to

0= 6 = m, itis sufficient to calculate their values for 9, Curves 1-5 in Figs. 2a and b correspond to the val-
ues 6 =0, 7/4, /2, (3/4)m, 7.

For p = 0 we obtain the case when an axisymmetrical vertical loadg{g) {4.8) acts on the dome, Thenwe ob~
tain from (4.3)-(4.6)

. )
2 (T, —~Ty) jﬂ VI, =T\ . A
th/k,,:——ﬁ“__—v)'"ﬂ'—q;'eXPo‘i’*'Tz_le ctgodyp, G; =G, =0,
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i.e., the dome material must be isotropic, and a moment-free stress state is ensured only due to the change in
thickness. The forces Ty, T, are determined from Egs. (4.11) with p = 0. The function H{¢), calculated in
this case, is shown in Fig. 3.

5. Problem 3. Let the following be given: the shape of the center sirface, the external load, thickness,
rigidity Gi(k = 4,..., N) or preliminary reinforcement, the angles ¥, (n=1,...,N), and boundary conditions
of the type (1.6)-(1.9). The values of Gy, G,, G; are given on part of the center surface or along separate
lines, The problem is to determiine the variation, along the entire center surface of the rigidities of the three
additional families of filaments with which the stress state in the shell examined will be moment-free.

Assuming, as in problem 2, that Ty, Ty, Ty, are known from a solution of the equilibrium equations, we
represent the relations of elasticity in the form

2 5 2 -1 " " "
Gre1lis + Gaeolis + Gseslis = Tlv(aEh) — Gy — 2128, — Q383

2 'Y 2 -1 " " "
Gyeyloy + Goeylsy + Gaeslas = Ty (aEh)™" — ags, T g9ty — fg3ay

i’

1 » ” ,
Gl‘?llnlm 4 Gzezlmlzg + Gieglislas = Ty (aBR) T — @138y — 09385 — @ssts,
where e, = &, cos™, + & sin P, + €3 5in Y, cOS Py, m = 1, 2, 3. From here we find

Gy = AJA (1 =1,2, 3), (5.1)
where

A = —sin (W — Py) sin (P, — Pg) sin (Py — by); & = £59;

. 3
A= {(aEh)“1 (Tilamlae + Tolimbe — Typ sin (Ym + 9)) — 2 [a5plamdes +
N . p=1
-+ a;'plml” — agp sin (Ym + Py}l sp} sitf (Y — Pif;  m, t=_1, 2, 3; mz=l; m4t.

Expressions are obtained for aij, al,...,a}; from Eqs. (4.2) for a};, aly,...,als, if the latter are summed
over k beginning with k = 4; in the expression sin(Pm — ¥¢) in Ay the values for the indices m and t must be
chosen in the same order as in the state with indices 1-3 in A.

Substituting the values for ey, &y, £3 from (2.1} into (5.1), we obtain expressions for Gj, Gy, Gj in terms
of the functions given according to the condition of the problem and arbitrary functions entering into the gen~
eral solutions Ty, Ty Tyy &4, €5 €3 Thus the solution of problem 3 reduces to determining the functions of
integration from the boundary conditions and the conditions on Gy, Gy, Gs. The displacements are then deter-
mined from Egs. (2.5).

We shall examine the case when the shell is closed in the circular direction and has a smooth vertex and
the value of the rigidity G, is given on the contour 6 = 8y

Gy, Bg) = G(@). (5.2)
Then, taking into account the dependence (2,4), we obtain from the expression for Gy in (5.1)
g = F — ke, = Fy — ey, {5.3)
where v
Fo=F(9,00); ko=Fk(9, 00); k=(+mB)Ay Ay=hk+mG;
i = sim (o — o) Sin (9 — o) st
F = (haBA,)  [Tilplss + Tyl —T, sin (Py 4 P,)]-

From Egs. (5.3) and (3.4) we find

9
8, = exp (— J)j.—!r-FoRlcosq;eprd(p, (5.4)
0

L4
1+ £
J= j"—-—-_-i‘——g R, cos pd¢.
J

Displacements in the dome are determined from Eqs. (2.6). As an example, we consider a spherical
dome with constant thickness, loaded and clamped in accordance with (4.4) and (4.5). We shall assume that
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there is no preliminary reinforcement (N = 3), the magnitudes of the reinforcement angles ¥, ¥,, ¥3 are con-
stant, and G (¢) = 0. '

The values of G, (continuous curves), G, (dashed curves), and G; (dot—dash curves), for which a mo-
ment-free state is realized in the dome under study, calculated from relations (5.1)~(5.4) and (4.11), are pre-
gsented in Fig, 4, The curves with the cross marks correspond to the case G; = G,. In the calculation it was
assumed that 0, = 7, ¢y = 7/4, ¢, = (7/16)7, p/g, = 0.5, q4/qy = 15, m = 1, v = 0.3, ¥ = 60°, ¥, = —60°, Y3 = 90°.
Curves 1-5 correspond to the values ¢ = 0, 7/4, n/2, (3/4)n, 7. We also note that the equalities G(¢, 9) =
Gy (¢, —0), G3(9@, 8) = G3(¢, —0) are satisfied,
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